DOE Facility Interactions of the Neutron & X-Ray Scattering Group

James D. Jorgensen, Gian P. Felcher, Raymond Osborn, Stephan Rosenkranz and Suzanne te Velthuis Materials Science Division, Argonne National Laboratory

Vision High-Impact Neutron & X-ray Scattering Science Emerging Science Opportunities

Development of New Instrument Capabilities at APS and SNS Integration with Synthesis, Physical Properties, Theory

- Pursue world-class science through comprehensive programs that integrate MSD strengths.
- Develop new scattering instrumentation and methods that address important emerging science questions.
- Strengthen the US scattering community and enable them to exploit advanced scattering techniques.

Science

Structure-property relationships in novel superconductors and other complex oxides

Neutron Powder Diffraction probes the ordering phenomena, defect concentrations, and charge states of complex oxides.

Facilities: APS, IPNS, SNS

Future Directions

- High-pressure synthesis can
- Extend solubility limits
- Stabilize higher oxidation states
- Stabilize night oxidation states
 Stabilize novel structural phases

Magnetic behavior in constrained geometries

GMR in High-T_c/CMR Superlattices Polarized Neutron Reflectometry probes the layer and interface properties of heterostructures.

Future Directions

- Magnetic domains and patterned nanoparticles.
- At IPNS, we have installed a wide-angle polarization analyzer.

Orbital correlations, frustration, and self-organization

Orbitally-induced
Dimerization in
La₄Ru₂O₁₀

Neutron and X-ray scattering probes the orbital physics of transition metal oxides. Facilities: APS, ESRF, ILL, ISIS, NIST, SNS

Future Directions

- Nanoscale self-organization induced by competing interactions.
- phase separation, dimerization, stripes

Instrumentation

Single crystal diffuse scattering with elastic discrimination (Corelli)

- Diffuse scattering is a powerful probe of nanoscale disorder.
- Prototype under construction at IPNS. DOE funding: \$797K
- Proposal for a dedicated SNS instrument will be submitted in 2006.

Spin echo resolved grazing incidence scattering (SERGIS)

- 10⁴ gain in intensity of grazing incidence scattering!
- Feasibility tests were completed in 2005. DOE funding: \$916K
- Proposal for a dedicated SNS instrument will be submitted in 2006.

Biological and polymeric membranes

- SERGIS will be an effective probe of complex biomimetic membrane disorder caused by bio-active molecules.
- In conjunction with SERGIS proposal at SNS, we propose to establish a new scientific program in our group.

Alternative interactions of peptides and lipid bilayers

National School of Neutron and X-ray Scattering

- Unique in the US (neutron + x-ray).
- Founded in 1999, by Gian Felcher.
- Chaired by group ever since.
- Teaches 60 graduate students per year.
 At least two times oversubscribed.

Community Interactions Spallation Neutron Source

- Members of Instrument Advisory or Development Teams of six instruments (ARCS, Liquids & Magnetism Reflectometer, POWGEN, SEQUOIA)
- Members of executive committee of two instruments (ARCS, POWGEN)
 I of the of letter of
- Letter of Intent submitted for one instrument (Corelli) and to be submitted in 2006 for another instrument (SERGIS).
- Chair of NeXus International Advisory Committee.
 NeXus is the data format standard adopted by the SNS.

